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Summary 

An analytical model which describes the impact of a hazard on the surrounding area 
has been given previously. The basis of the model is a uniform population density, the 
inverse square law for the decay of the intensity of the physical effect and the lognormal 
distribution, or probit equation, for the relation between the causative, or injury, factor 
and the probability of injury. It was shown that if these assumptions hold, the number 
of people injured may be approximately estimated by calculating the radius for 50% 
injury and assumingthat all persons inside the circle suffer injury while all those outside 
it escape injury, and that a simple correction factor can be derived to compensate for 
the error in this method. It is shown in the present paper that the restriction of the 
inverse square law for the decay of the intensity of the physical effect can be relaxed 
and that for the more general case where the decay is inversely proportional to some 
power n of the distance, the correction factor is e = exp (2u*/n’), where 0 is the spread 
parameter of the lognormal distribution,. 

Introduction 

An analytical model for the impact of a hazard on the surrounding area 
has been described previously [l] . The model is based on a uniform popula- 
tion density, the inverse square law for the decay of the intensity of the 
physical effect and the lognormal distribution, or probit equation, for the 
relation between the causative, or injury, factor and the probability of 
injury. This model was compared with an approximate model which is 
sometimes used to estimate the number of injured. In this approximate 
model the radius rso at which there is 50% probability of injury is deter- 
mined and it is then assumed that all persons inside the circle suffer injury 
while all those outside it escape injury. It was shown using the more exact 
model that the correction factor to be applied to the approximate model 
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is C#J = exp (a2/2), where u is the spread parameter of the lognormal distribu- 
tion. It was also shown that the simpler models for the physical phenomena 
which are of interest in hazards work tend to yield an approximately inverse 
square law relation for the decay of the intensity of the physical effect and 
examples were given for fire, explosion and toxic release. 

It is the purpose of the present paper to show that the restriction of the 
inverse square law for the decay can be relaxed and to treat, and to derive 
the correction factor for, the more general case in which the decay is in- 
versely proportional to some power n of the distance. 

Hazard impact model 

The model is similar to that described in eqns. (ll)-(13) of the previous 
paper [l] except that the decay index 2 is replaced by n in the latter equa- 
tion. It therefore consists of the following equations: 

Ni = J 2ndpP(r)rdr 
0 

(1) 

1 x 1 
s - exp[-(ln x - ~n*)~/2a~]dx 

p = (27r)“‘% o x 
(2) 

X = (roW (3) 

where d, is the population density (persons/m2), m* the location parameter 
of the lognormal distribution, Ni the total number of people injured, P the 
probability of injury, r the distance (m), r. the radius of the physical 
phenomenon (m) and x the normalised injury factor. 

In principle, r. is intended to represent the radius of the physical effect, 
where this is a meaningful concept as with, say, a fireball, and hence the 
radius at which the probability of injury is unity. The choice of ro, how- 
ever, is unrestricted. It is recommended that it be chosen so as to give a 
probability of injury close to unity. 

It can be shown that eqns. (l)-(3) yield the result 

Ni = nr,,2dp exp (2a2/n2) 

The derivation of eqn. (4) is given in the Appendix. 

(4) 

Equation (4) may be written in the form 

Ni = nrS02dP@ (5) 

with 

@ = exp (2u2/n2) (6) 

where r$ is a correction factor which allows for the effect of the variance and 
of the decay index. 
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Decay relationships 

The decay relationships which describe the decay of the intensity of the 
physical effect with distance were given in the previous paper for the simpler 
models for fire, explosion and toxic release. It was shown that these models 
give an approximately inverse square law relation for the decay of the in- 
tensity (thermal radiation, overpressure, concentration). However, some of 
the current more complex and realistic models for these phenomena, which 
are described below, give different decay indices. Moreover, in some cases 
the injury factor is not the intensity itself but some function of it. It is 
necessary, therefore, to examine these relations in more detail. 

It is assumed that the intensity of the physical effect decays with distance 
according to the power law relation 

w = k,/r”W (7) 

where n, is the decay index for the intensity and w the intensity. The injury 
factor is assumed to be a power function of the intensity 

v = k,w”w (8) 

where nwv is the power index for the injury factor and v the injury factor. 
It follows from eqns. (7) and (8) that the injury factor decays with 

distance according to the relation 

v = kv/rn 

where 

(9) 

k, = k,kWnm 

n = n,n, 

where n is the decay index for the injury factor. 

(10) 

01) 

The separation of the relationship for the decay of the injury factor into 
two, one relation for the decay of the intensity and one relation between 
the intensity and the injury factor, is desirable where possible, since it allows 
the two relations, each of which may involve error, to be considered 
separately. It is not always possible to make this separation, however. For 
toxic gas, for example, where the injury factor is some concentration-time 
function, it may be necessary, particularly with instantaneous releases, to 
calculate this function from the outset. 

For fire, the inverse square law for the decay of thermal radiation is well 
established so that the index n, equals 2. This applies for fireballs, pool 
fires and flares. The injury factor v, however, is usually given (e.g. Eisenberg 
et al. [2] ) as 

v = 14J3t (12) 

where I is the thermal radiation (W/m’) and t the exposure time (s). 
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For explosion, the decays of the peak overpressure and the impulse 
depend on the model used. For the TNT equivalent model, which is well 
established (e.g. Baker et al. [ 31) 

PO = f(z) (13) 

Ip = f(z) (14) 

with 

2 = r/W”3 (15) 

where Ip is the impulse (N s/m2), p” the peak overpressure (N/m2), W the 
mass of explosive (kg) and z the scaled distance (m/kg”3). The curves given 
by Baker et al. [3] correspond over the overpressure range l-O.1 bar to 
decay indices of 1.7 and 0.9 for peak overpressure and impulse, respectively. 

For unconfined vapour cloud explosion (UVCE), there is no established 
model. Investigations of actual UVCEs provide some information. For the 
Flixborough explosion, for example, the curve given by Sadee et al. [4] 
gives over the overpressure range l-0.1 bar a decay ratio for peak over- 
pressure of 1.7. On the other hand some theoretical models such as those 
of Wiekema [ 51 and Ebert and Becker [6] give for peak overpressure decay 
indices of about unity. 

The injury factor for explosion is usually given as p” or IP, depending 
on the injury considered. 

For toxic release the situation is more complicated, because the modelling 
both of gas dispersion and of toxic effects is complex. It is necessary in dis- 
persion modelling to distinguish between neutral density and heavy gas, 
instantaneous and continuous release, and different stability conditions, and 
in injury modelling between concentration, dosage and other concentra- 
tion-time functions. 

The form of the injury factor for toxic gas depends on the particular gas 
concerned. Some typical relations are 

u =c (16a) 

= ct Wb) 

= c2t (16~) 

where C is concentration (kg/m3). In practical situations people are exposed 
to a range of concentrations over a period of time. This is taken into account 
by the following more general relationship (Eisenberg et al. [2] ) 

v = J Cmdt 

where m is an index. 

(17) 

It is convenient to consider first as the injury factor concentration C. As 
shown in the previous paper [l] using the Sutton models [7], for a neutral 
density gas in neutral stability conditions the decay indices for concentra- 
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tion downwind on the centreline are 2.6 for au instantanmus release and 
1.75 for a continuous release. For heavy gas dispersion there are a large 
number of models. Currently the box model is probably the most favoured 
and of the numerous variants among the most widely used are DENZ [B] 
for an instantaneous release and CRUNCH [9] for a continuous release. 
In these models there is a density-influenced phase followed by a passive 
dispersion phase. The models are complex and have been solved numerical- 
ly, although more recently mrne analytical results have been derived [9- 
111. The general nature of the models is best indicated by considering a 
particular case. An in&antaneous release of 200 te of ammonia in Pasquill 
D stability conditions and wind speed 3 m/s has been investigated using the 
DENZ model and a continuous release of 23.9 kg/s of chlorine in Pasquill D 
conditions and wind speed 5 m/s using CRUNCH. The concentrations down- 
wind on the centre line for the latter case are shown in Fig. 1. This curve 
has a characteristic shape, which shows an increasing decay up to the transi- 
tion point and a constant decay thereafter. This behaviour appears to be 
typical of both instantaneous and continuous releases, similar cmes being 
described by others (e.g. McQuaid [ 121). For the two specific cases quoted 

16’1 
10 4 .10*. 

Distance ( m ) 

Fig. 1. Decay of concentration with distance for a continuous release of chlorine of 23.9 
kg/s using the CRUNCH model 191. Wind speed 5 m/s, stability conditions Pasquill D. 
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the decay indices after transition are 1.4 for the instantaneous release and 
1.7 for the continuous release. A more detailed treatment of the decay of 
concentration for heavy gas dispersion and of the implications of this for 
the model is beyond the scope of this paper. 

If the injury factor is dosage Ct, then as shown in the previous paper, for 
a neutral density gas in neutral stability conditions the decay index for 
dosage Ct downwind on the centreline is 1.75 for both instantaneous and 
continuous releases. The decay index for dosage for heavy gas is more com- 
plex, but an indication can be obtained by considering the continuous re- 
lease example just described. As stated above, after transition the decay 
index for concentration is 1.7 and that for dosage is therefore also 1.7. 

If the injury factor is the function C*t, again the situation is more com- 
plex, but an indication can be obtained by considering continuous releases. 
For both neutral density and heavy gas dispersion the decay index for the 
function C2t downwind on the centreline will be the square of that for C. 
Hence for neutral density gas in neutral stability conditions the decay index 
is 3.1 (=(1.75)*) and for the heavy gas continuous release example it is 
2.9 (=(1.7)2). 

The values of the decay indices for intensity and for injury factor just 
discussed are summarised in Table 1. 

The normalised intensity i and the normalised injury factor x may be ob- 
tained by dividing the intensity w and the injury factor u by the values of 
these variables at rO . 

Discussion 

A model of hazard impact was presented in a previous paper [ 11. The 
principal assumptions were that the population is uniformly distributed, 
that the intensity-distance relation for the physical effect is the inverse 
square law and that the injury probability-injury factor relation is the log- 
normal distribution, or probit equation. 

It has been shown in the present paper that the restriction of the inverse 
square law for decay of the intensity of the physical effect can be relaxed 
and that the model can be generalised to an inverse power law relation. 
Moreover, it can also be generalised to handle a power law relation be- 
tween the intensity and the injury factor. The model is given by eqns. (5) 
and (6). The correction factor $ (= exp (2u2/n2)) for variance and decay 
index given in eqn. (6) reduces to $ (= exp (a’/B)) as given previously for 
inverse square law decay with n = 2. 

The decay index for the intensity given by the more complex and realistic 
models of physical phenomena has been reviewed and it has been shown 
that it tends to lie in the range 1-2. The decay index for the injury factor 
has also been reviewed and it has been shown that it tends to lie in the 
range l-3. 
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TABLE 1 

Decay index for the intensity and injury factor for some principal hazards 

Hazard Model Physical Intensity, Injury Power Decay index 
effect W factor, index, 

V nw 
Intensity, Injury 
nvw factor 

n 

Fire Fireball, Thermal I 
pool fire radiation 

Explosion TNT Peak P0 
overpressure 
Impulse IP 
Peak P0 
overpressure 

UVCE 
(Flix- 
borough) 

UVCE 

Toxic 
release 

Neutral 
density: 
instant- 
aneous 
release 

Neutral 
density : 
continuous 
release 

Heavy 
gas: 
instant- 
aneous 
release 

Heavy 
gas: 
continuous 
release 

Peak P0 
overpressure 

Concentration C 

Concentration C 

Concentration C 

Concentration C 

Z4’V 

PO 

IP 
PO 

PO 

C 
ct 

C 
ct 
CV 

C 

C 
ct 
c*t 

413 

1 

1 

1 

1 

1 
1 

1 
1 
2 

1 

1 
1 
2 

2 2.7 

1.7* 

0.9a 

1.7b 

1.7 

0.9 

1.7 

l.OC 1.0 
l.ld 1.1 

2.6e 2.6 
1.75e 1.75 

1.75e 

1.4f 

1.79 

1.75 
1.76 
3.1 

1.4 

1.7 
1.7 
2.9 

a Over the range l-0.1 bar [ 31. 
bOver the range l-0.1 bar [4]. 
c Wiekema model [ 51. 
dEbert and Becker model [ 61. 
eSee Ref. [l]. 
f Specific example of 200 te ammonia release using DENZ [B] . 
g Specific example of 23.9 kg/s chlorine release using CRUNCH [ 91. 
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List of symbols 

c 
5 
z 
$7 kvw, kw 
m 
m* 
n 

4 
nw 
Ni 
P0 
P 
r 

r. 
t 
V 

.w 
X 

.z 

; 
cp 

Subscript 
50 
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Appendix 

The model considered is that in eqns. (l)-(3). The treatment is essentially 
similar to that given in Appendix 2 of Ref. [l] . 

The injury factor xSO and the radius rso at which the probability of injury 
is 50% (P = 0.5) are obtained from eqns. (9) and (10) of Ref. [l] by putting 
Y = 5 so that 

x50 = exp m* 

From eqn. (3) 

r50 = ro/xSorm 

= r,/exp (m*/n) 

Let 

y=hlx 

Then 

1 Y 

P(r) = (2n)l,20 __ exp 1-b - m*12/2a21 dy _f 

Let 

2 = (Y - m*)/o 

1 
P(r) (2n),,2 exp s 

Q(z) (A.6b) 

where a(z) is the normal cumulative di&ibution function. 
Then, from eqns. (3), (A.3), (A.5) and (A.6), eqn. (1) becomes 

Ni = lN 2ndp Q [(n In Fo --n lnr-m*)/o]rdr (A.7) 

(A.1) 

(A.2a) 

(A.2b) 

(A.3) 

(A-4) 

(A-5) 

(A.6a) 
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Let 

u = (n In r0 - n In r - m*)/u (A-8) 

Then 

Ni = nr,%& exp (---2m*/u) J- (2/u)u exp (-2~ u/n) Q, (u) du 
-0a 

= .rrro2dp exp (--2m*/n)l 

where 

(A-9) 

(A.lO) 

I = Jp (2/n)a exp (-2ou/n) @(u)du 
-0 

(AX) 

From the derivation of eqn. (A2.17) from eqn. (A2.12) in Ref. [l], sub- 
stituting (20/n) for u , it follows that 

I= exp (2u2/n2) (A.12) 

Then eqn. (A.lO) becomes 

Ni = nro2dp exp (--2m*/u) exp (2u2/u2) 

and hence from eqn. (A.2) 

Ni = nrso2d, exp (fi!~~/t~~) 

= m502d,# 

where 

$I = exp (2u2/n2) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 


